Quick Telecast
Expect News First

Microporous water with high gas solubilities

0 91


  • Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bavykina, A., Cadiau, A. & Gascon, J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 386, 85–95 (2019).

    CAS 

    Google Scholar
     

  • Jie, K., Zhou, Y., Ryan, H. P., Dai, S. & Nitschke, J. R. Engineering permanent porosity into liquids. Adv. Mater. 33, 2005745 (2021).

    CAS 

    Google Scholar
     

  • Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilhelm, E., Battino, R. & Wilcock, R. J. Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977).

    CAS 

    Google Scholar
     

  • Peng, Y., Kheir, J. N. & Polizzotti, B. D. Injectable oxygen: interfacing materials chemistry with resuscitative science. Chem. Eur. J. 24, 18820–18829 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    CAS 

    Google Scholar
     

  • Fox E. B. & Colón-Mercardo, H. R. in Mass Transfer–Advanced Aspects (Ed. Nakajima, H.) Ch. 13 (Intech, 2011).

  • Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS 

    Google Scholar
     

  • Greenaway, R. L. et al. Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chem. Sci. 8, 2640–2651 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthews, B. W. & Liu, L. A review about nothing: are apolar cavities in proteins really empty? Protein Sci. 18, 494–502 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, J. W. et al. Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Nat. Chem. 12, 589–594 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mintova, S., Gilson, J. P. & Valtchev, V. Advances in nanosized zeolites. Nanoscale 5, 6693–6703 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindoro, M., Yanai, N., Jee, A. Y. & Granick, S. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Jayaramulu, K. et al. Hydrophobic metal–organic frameworks. Adv. Mater. 31, 1900820 (2019).


    Google Scholar
     

  • Fraux, G., Coudert, F. X., Boutin, A. & Fuchs, A. H. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem. Soc. Rev. 46, 7421–7437 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Eroshenko, V., Regis, R.-C., Soulard, M. & Patarin, J. Energetics: a new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 123, 8129–8130 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Cailliez, F. et al. Thermodynamics of water intrusion in nanoporous hydrophobic solids. Phys. Chem. Chem. Phys. 10, 4817–4826 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, G., Nouali, H., Marichal, C., Chaplais, G. & Patarin, J. Energetic performances of the metal–organic framework ZIF-8 obtained using high pressure water intrusion–extrusion experiments. Phys. Chem. Chem. Phys. 15, 48884888 (2013).


    Google Scholar
     

  • Khay, I. et al. Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion–extrusion experiments. Dalton Trans. 45, 4392–4400 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Flanigen, E. M. et al. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512–516 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • Persson, A. E., Schoeman, B. J., Sterte, J. & Otterstedt, J. E. The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14, 557–567 (1994).

    CAS 

    Google Scholar
     

  • Lerouge, F. et al. Towards thrombosis-targeted zeolite nanoparticles for laser-polarized 129Xe MRI. J. Mater. Chem. 19, 379–386 (2008).


    Google Scholar
     

  • Desbiens, N. et al. Water condensation in hydrophobic nanopores. Angew. Chem. Int. Ed. 44, 5310–5313 (2005).

    CAS 

    Google Scholar
     

  • Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed 

    Google Scholar
     

  • Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. 103, 10186–10191 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocca, J. D., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire, C. V. & Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 51, 5199–5217 (2015).

    CAS 

    Google Scholar
     

  • Gomes, M. C., Pison, L., Červinka, C. & Padua, A. Porous ionic liquids or liquid metal–organic frameworks? Angew. Chem. Int. Ed. 130, 12085–12088 (2018).

    ADS 

    Google Scholar
     

  • Duan, P. et al. Polymer infiltration into metal–organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 141, 7589–7595 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Beverung, C. J., Radke, C. J. & Blanch, H. W. Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 81, 59–80 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem. Int. Ed. 54, 14738–14742 (2015).

    CAS 

    Google Scholar
     

  • Knebel, A. et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühl, O. The chemistry of functionalised N-heterocyclic carbenes. Chem. Soc. Rev. 36, 592–607 (2006).

    PubMed 

    Google Scholar
     

  • Riess, J. G. Oxygen carriers (“blood substitutes”) – raison d’etre, chemistry, and some physiology. Chem. Rev. 101, 2797–2919 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Kheir, J. N. et al. Oxygen gas-filled microparticles provide intravenous oxygen delivery. Sci. Transl. Med. 4, 140ra88 (2012).

    PubMed 

    Google Scholar
     

  • Heintz, Y. J., Sehabiague, L., Morsi, B. I., Jones, K. L. & Pennline, H. W. Novel physical solvents for selective CO2 capture from fuel gas streams at elevated pressures and temperatures. Energy Fuels 22, 3824–3837 (2008).

    CAS 

    Google Scholar
     

  • Mayer, D. & Ferenz, K. B. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur. J. Appl. Physiol. 119, 2421–2433 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenburger, P. et al. Cardiac arrest in public locations—an independent predictor for better outcome? Resuscitation 70, 395–403 (2006).

    PubMed 

    Google Scholar
     

  • Farris, A. L., Rindone, A. N. & Grayson, W. L. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B 4, 3422–3432 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (Structure Commission of the International Zeolite Association, accessed 31 August 2021); http://www.iza-structure.org/databases/.

  • Morris, W. et al. NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J. Phys. Chem. C 116, 13307–13312 (2012).

    CAS 

    Google Scholar
     

  • Ghorbanpour, A., Gumidyala, A., Grabow, L. C., Crossley, S. P. & Rimer, J. D. Epitaxial growth of [email protected]: a core–shell zeolite designed with passivated surface acidity. ACS Nano 9, 4006–4016 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsapatsis, M., Lovallo, M., Okubo, T., Davis, M. E. & Sadakata, M. Characterization of zeolite L nanoclusters. Chem. Mater. 7, 1734–1741 (1995).

    CAS 

    Google Scholar
     

  • Cravillon, J. et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009).

    CAS 

    Google Scholar
     

  • Emami, F. S. et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 26, 2647–2658 (2014).

    CAS 

    Google Scholar
     

  • Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, B., Sant, M., Demontis, P. & Suffritti, G. B. Force field for molecular dynamics computations in flexible ZIF-8 framework. J. Phys. Chem. B 116, 933–938 (2012).

    CAS 

    Google Scholar
     

  • Sheveleva, A. M. et al. Probing gas adsorption in metal–organic framework ZIF-8 by EPR of embedded nitroxides. J. Phys. Chem. B 121, 19880–19886 (2017).

    CAS 

    Google Scholar
     

  • Li, P., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, B., Muntean, J. V., Olvera de la Cruz, M. & Ellis, R. J. Ion transport mechanisms in liquid–liquid interface. Langmuir 33, 6135–6142 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Weng, T. & Schmidt, J. R. Structure and thermodynamic stability of zeolitic imidazolate framework surfaces. J. Phys. Chem. B 124, 1458–1468 (2020).

    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Essmann, U., Perera, L. & Berkowitz, M. L. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr. 68, 1278–1289 (2012).

    CAS 
    PubMed 

    Google Scholar
     


  • Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bavykina, A., Cadiau, A. & Gascon, J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 386, 85–95 (2019).

    CAS 

    Google Scholar
     

  • Jie, K., Zhou, Y., Ryan, H. P., Dai, S. & Nitschke, J. R. Engineering permanent porosity into liquids. Adv. Mater. 33, 2005745 (2021).

    CAS 

    Google Scholar
     

  • Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilhelm, E., Battino, R. & Wilcock, R. J. Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977).

    CAS 

    Google Scholar
     

  • Peng, Y., Kheir, J. N. & Polizzotti, B. D. Injectable oxygen: interfacing materials chemistry with resuscitative science. Chem. Eur. J. 24, 18820–18829 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    CAS 

    Google Scholar
     

  • Fox E. B. & Colón-Mercardo, H. R. in Mass Transfer–Advanced Aspects (Ed. Nakajima, H.) Ch. 13 (Intech, 2011).

  • Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS 

    Google Scholar
     

  • Greenaway, R. L. et al. Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chem. Sci. 8, 2640–2651 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthews, B. W. & Liu, L. A review about nothing: are apolar cavities in proteins really empty? Protein Sci. 18, 494–502 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, J. W. et al. Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Nat. Chem. 12, 589–594 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mintova, S., Gilson, J. P. & Valtchev, V. Advances in nanosized zeolites. Nanoscale 5, 6693–6703 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindoro, M., Yanai, N., Jee, A. Y. & Granick, S. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Jayaramulu, K. et al. Hydrophobic metal–organic frameworks. Adv. Mater. 31, 1900820 (2019).


    Google Scholar
     

  • Fraux, G., Coudert, F. X., Boutin, A. & Fuchs, A. H. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem. Soc. Rev. 46, 7421–7437 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Eroshenko, V., Regis, R.-C., Soulard, M. & Patarin, J. Energetics: a new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 123, 8129–8130 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Cailliez, F. et al. Thermodynamics of water intrusion in nanoporous hydrophobic solids. Phys. Chem. Chem. Phys. 10, 4817–4826 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, G., Nouali, H., Marichal, C., Chaplais, G. & Patarin, J. Energetic performances of the metal–organic framework ZIF-8 obtained using high pressure water intrusion–extrusion experiments. Phys. Chem. Chem. Phys. 15, 48884888 (2013).


    Google Scholar
     

  • Khay, I. et al. Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion–extrusion experiments. Dalton Trans. 45, 4392–4400 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Flanigen, E. M. et al. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512–516 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • Persson, A. E., Schoeman, B. J., Sterte, J. & Otterstedt, J. E. The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14, 557–567 (1994).

    CAS 

    Google Scholar
     

  • Lerouge, F. et al. Towards thrombosis-targeted zeolite nanoparticles for laser-polarized 129Xe MRI. J. Mater. Chem. 19, 379–386 (2008).


    Google Scholar
     

  • Desbiens, N. et al. Water condensation in hydrophobic nanopores. Angew. Chem. Int. Ed. 44, 5310–5313 (2005).

    CAS 

    Google Scholar
     

  • Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed 

    Google Scholar
     

  • Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. 103, 10186–10191 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocca, J. D., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire, C. V. & Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 51, 5199–5217 (2015).

    CAS 

    Google Scholar
     

  • Gomes, M. C., Pison, L., Červinka, C. & Padua, A. Porous ionic liquids or liquid metal–organic frameworks? Angew. Chem. Int. Ed. 130, 12085–12088 (2018).

    ADS 

    Google Scholar
     

  • Duan, P. et al. Polymer infiltration into metal–organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 141, 7589–7595 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Beverung, C. J., Radke, C. J. & Blanch, H. W. Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 81, 59–80 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem. Int. Ed. 54, 14738–14742 (2015).

    CAS 

    Google Scholar
     

  • Knebel, A. et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühl, O. The chemistry of functionalised N-heterocyclic carbenes. Chem. Soc. Rev. 36, 592–607 (2006).

    PubMed 

    Google Scholar
     

  • Riess, J. G. Oxygen carriers (“blood substitutes”) – raison d’etre, chemistry, and some physiology. Chem. Rev. 101, 2797–2919 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Kheir, J. N. et al. Oxygen gas-filled microparticles provide intravenous oxygen delivery. Sci. Transl. Med. 4, 140ra88 (2012).

    PubMed 

    Google Scholar
     

  • Heintz, Y. J., Sehabiague, L., Morsi, B. I., Jones, K. L. & Pennline, H. W. Novel physical solvents for selective CO2 capture from fuel gas streams at elevated pressures and temperatures. Energy Fuels 22, 3824–3837 (2008).

    CAS 

    Google Scholar
     

  • Mayer, D. & Ferenz, K. B. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur. J. Appl. Physiol. 119, 2421–2433 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenburger, P. et al. Cardiac arrest in public locations—an independent predictor for better outcome? Resuscitation 70, 395–403 (2006).

    PubMed 

    Google Scholar
     

  • Farris, A. L., Rindone, A. N. & Grayson, W. L. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B 4, 3422–3432 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (Structure Commission of the International Zeolite Association, accessed 31 August 2021); http://www.iza-structure.org/databases/.

  • Morris, W. et al. NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J. Phys. Chem. C 116, 13307–13312 (2012).

    CAS 

    Google Scholar
     

  • Ghorbanpour, A., Gumidyala, A., Grabow, L. C., Crossley, S. P. & Rimer, J. D. Epitaxial growth of [email protected]: a core–shell zeolite designed with passivated surface acidity. ACS Nano 9, 4006–4016 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsapatsis, M., Lovallo, M., Okubo, T., Davis, M. E. & Sadakata, M. Characterization of zeolite L nanoclusters. Chem. Mater. 7, 1734–1741 (1995).

    CAS 

    Google Scholar
     

  • Cravillon, J. et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009).

    CAS 

    Google Scholar
     

  • Emami, F. S. et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 26, 2647–2658 (2014).

    CAS 

    Google Scholar
     

  • Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, B., Sant, M., Demontis, P. & Suffritti, G. B. Force field for molecular dynamics computations in flexible ZIF-8 framework. J. Phys. Chem. B 116, 933–938 (2012).

    CAS 

    Google Scholar
     

  • Sheveleva, A. M. et al. Probing gas adsorption in metal–organic framework ZIF-8 by EPR of embedded nitroxides. J. Phys. Chem. B 121, 19880–19886 (2017).

    CAS 

    Google Scholar
     

  • Li, P., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, B., Muntean, J. V., Olvera de la Cruz, M. & Ellis, R. J. Ion transport mechanisms in liquid–liquid interface. Langmuir 33, 6135–6142 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Weng, T. & Schmidt, J. R. Structure and thermodynamic stability of zeolitic imidazolate framework surfaces. J. Phys. Chem. B 124, 1458–1468 (2020).

    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Essmann, U., Perera, L. & Berkowitz, M. L. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Bujacz, A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr. 68, 1278–1289 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • FOLLOW US ON GOOGLE NEWS

    Read original article here

    Denial of responsibility! Quick Telecast is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

    Leave a comment
    buy kamagra buy kamagra online
    Ads Blocker Image Powered by Code Help Pro

    Ads Blocker Detected!!!

    We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

    Powered By
    Best Wordpress Adblock Detecting Plugin | CHP Adblock